Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra. | \(-h_{6}-1/4h_{5}+1/2h_{4}-1/2h_{3}+1/4h_{2}+h_{1}\) | \(g_{15}+g_{12}\) | \(g_{14}+g_{13}\) | \(g_{5}+g_{2}\) | \(g_{21}\) | \(g_{20}\) | \(g_{19}\) | \(g_{17}\) |
weight | \(0\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{3}\) | \(4\omega_{1}\) | \(2\omega_{1}+\omega_{2}+\omega_{3}\) | \(2\omega_{1}+\omega_{2}+\omega_{3}\) | \(2\omega_{2}+2\omega_{3}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{3}\) | \(4\omega_{1}\) | \(2\omega_{1}+\omega_{2}+\omega_{3}-14\psi\) | \(2\omega_{1}+\omega_{2}+\omega_{3}+14\psi\) | \(2\omega_{2}+2\omega_{3}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0, 0) | \(\displaystyle V_{2\omega_{3}} \) → (0, 0, 2, 0) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0, 0) | \(\displaystyle V_{2\omega_{1}+\omega_{2}+\omega_{3}-14\psi} \) → (2, 1, 1, -14) | \(\displaystyle V_{2\omega_{1}+\omega_{2}+\omega_{3}+14\psi} \) → (2, 1, 1, 14) | \(\displaystyle V_{2\omega_{2}+2\omega_{3}} \) → (0, 2, 2, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(2\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{2}+\omega_{3}\) \(2\omega_{1}-\omega_{2}+\omega_{3}\) \(2\omega_{1}+\omega_{2}-\omega_{3}\) \(-2\omega_{1}+\omega_{2}+\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}-\omega_{3}\) \(-2\omega_{1}-\omega_{2}+\omega_{3}\) \(-2\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}-\omega_{3}\) \(-2\omega_{1}-\omega_{2}-\omega_{3}\) | \(2\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{2}+\omega_{3}\) \(2\omega_{1}-\omega_{2}+\omega_{3}\) \(2\omega_{1}+\omega_{2}-\omega_{3}\) \(-2\omega_{1}+\omega_{2}+\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}-\omega_{3}\) \(-2\omega_{1}-\omega_{2}+\omega_{3}\) \(-2\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}-\omega_{3}\) \(-2\omega_{1}-\omega_{2}-\omega_{3}\) | \(2\omega_{2}+2\omega_{3}\) \(2\omega_{3}\) \(2\omega_{2}\) \(-2\omega_{2}+2\omega_{3}\) \(0\) \(2\omega_{2}-2\omega_{3}\) \(-2\omega_{2}\) \(-2\omega_{3}\) \(-2\omega_{2}-2\omega_{3}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(2\omega_{1}+\omega_{2}+\omega_{3}-14\psi\) \(\omega_{2}+\omega_{3}-14\psi\) \(2\omega_{1}-\omega_{2}+\omega_{3}-14\psi\) \(2\omega_{1}+\omega_{2}-\omega_{3}-14\psi\) \(-2\omega_{1}+\omega_{2}+\omega_{3}-14\psi\) \(-\omega_{2}+\omega_{3}-14\psi\) \(\omega_{2}-\omega_{3}-14\psi\) \(2\omega_{1}-\omega_{2}-\omega_{3}-14\psi\) \(-2\omega_{1}-\omega_{2}+\omega_{3}-14\psi\) \(-2\omega_{1}+\omega_{2}-\omega_{3}-14\psi\) \(-\omega_{2}-\omega_{3}-14\psi\) \(-2\omega_{1}-\omega_{2}-\omega_{3}-14\psi\) | \(2\omega_{1}+\omega_{2}+\omega_{3}+14\psi\) \(\omega_{2}+\omega_{3}+14\psi\) \(2\omega_{1}-\omega_{2}+\omega_{3}+14\psi\) \(2\omega_{1}+\omega_{2}-\omega_{3}+14\psi\) \(-2\omega_{1}+\omega_{2}+\omega_{3}+14\psi\) \(-\omega_{2}+\omega_{3}+14\psi\) \(\omega_{2}-\omega_{3}+14\psi\) \(2\omega_{1}-\omega_{2}-\omega_{3}+14\psi\) \(-2\omega_{1}-\omega_{2}+\omega_{3}+14\psi\) \(-2\omega_{1}+\omega_{2}-\omega_{3}+14\psi\) \(-\omega_{2}-\omega_{3}+14\psi\) \(-2\omega_{1}-\omega_{2}-\omega_{3}+14\psi\) | \(2\omega_{2}+2\omega_{3}\) \(2\omega_{3}\) \(2\omega_{2}\) \(-2\omega_{2}+2\omega_{3}\) \(0\) \(2\omega_{2}-2\omega_{3}\) \(-2\omega_{2}\) \(-2\omega_{3}\) \(-2\omega_{2}-2\omega_{3}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}+\omega_{3}-14\psi}\oplus M_{\omega_{2}+\omega_{3}-14\psi}\oplus M_{2\omega_{1}-\omega_{2}+\omega_{3}-14\psi} \oplus M_{2\omega_{1}+\omega_{2}-\omega_{3}-14\psi}\oplus M_{-2\omega_{1}+\omega_{2}+\omega_{3}-14\psi}\oplus M_{-\omega_{2}+\omega_{3}-14\psi} \oplus M_{\omega_{2}-\omega_{3}-14\psi}\oplus M_{2\omega_{1}-\omega_{2}-\omega_{3}-14\psi}\oplus M_{-2\omega_{1}-\omega_{2}+\omega_{3}-14\psi} \oplus M_{-2\omega_{1}+\omega_{2}-\omega_{3}-14\psi}\oplus M_{-\omega_{2}-\omega_{3}-14\psi}\oplus M_{-2\omega_{1}-\omega_{2}-\omega_{3}-14\psi}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}+\omega_{3}+14\psi}\oplus M_{\omega_{2}+\omega_{3}+14\psi}\oplus M_{2\omega_{1}-\omega_{2}+\omega_{3}+14\psi} \oplus M_{2\omega_{1}+\omega_{2}-\omega_{3}+14\psi}\oplus M_{-2\omega_{1}+\omega_{2}+\omega_{3}+14\psi}\oplus M_{-\omega_{2}+\omega_{3}+14\psi} \oplus M_{\omega_{2}-\omega_{3}+14\psi}\oplus M_{2\omega_{1}-\omega_{2}-\omega_{3}+14\psi}\oplus M_{-2\omega_{1}-\omega_{2}+\omega_{3}+14\psi} \oplus M_{-2\omega_{1}+\omega_{2}-\omega_{3}+14\psi}\oplus M_{-\omega_{2}-\omega_{3}+14\psi}\oplus M_{-2\omega_{1}-\omega_{2}-\omega_{3}+14\psi}\) | \(\displaystyle M_{2\omega_{2}+2\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{2\omega_{2}}\oplus M_{-2\omega_{2}+2\omega_{3}}\oplus M_{0}\oplus M_{2\omega_{2}-2\omega_{3}} \oplus M_{-2\omega_{2}}\oplus M_{-2\omega_{3}}\oplus M_{-2\omega_{2}-2\omega_{3}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}+\omega_{3}-14\psi}\oplus M_{\omega_{2}+\omega_{3}-14\psi}\oplus M_{2\omega_{1}-\omega_{2}+\omega_{3}-14\psi} \oplus M_{2\omega_{1}+\omega_{2}-\omega_{3}-14\psi}\oplus M_{-2\omega_{1}+\omega_{2}+\omega_{3}-14\psi}\oplus M_{-\omega_{2}+\omega_{3}-14\psi} \oplus M_{\omega_{2}-\omega_{3}-14\psi}\oplus M_{2\omega_{1}-\omega_{2}-\omega_{3}-14\psi}\oplus M_{-2\omega_{1}-\omega_{2}+\omega_{3}-14\psi} \oplus M_{-2\omega_{1}+\omega_{2}-\omega_{3}-14\psi}\oplus M_{-\omega_{2}-\omega_{3}-14\psi}\oplus M_{-2\omega_{1}-\omega_{2}-\omega_{3}-14\psi}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}+\omega_{3}+14\psi}\oplus M_{\omega_{2}+\omega_{3}+14\psi}\oplus M_{2\omega_{1}-\omega_{2}+\omega_{3}+14\psi} \oplus M_{2\omega_{1}+\omega_{2}-\omega_{3}+14\psi}\oplus M_{-2\omega_{1}+\omega_{2}+\omega_{3}+14\psi}\oplus M_{-\omega_{2}+\omega_{3}+14\psi} \oplus M_{\omega_{2}-\omega_{3}+14\psi}\oplus M_{2\omega_{1}-\omega_{2}-\omega_{3}+14\psi}\oplus M_{-2\omega_{1}-\omega_{2}+\omega_{3}+14\psi} \oplus M_{-2\omega_{1}+\omega_{2}-\omega_{3}+14\psi}\oplus M_{-\omega_{2}-\omega_{3}+14\psi}\oplus M_{-2\omega_{1}-\omega_{2}-\omega_{3}+14\psi}\) | \(\displaystyle M_{2\omega_{2}+2\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{2\omega_{2}}\oplus M_{-2\omega_{2}+2\omega_{3}}\oplus M_{0}\oplus M_{2\omega_{2}-2\omega_{3}} \oplus M_{-2\omega_{2}}\oplus M_{-2\omega_{3}}\oplus M_{-2\omega_{2}-2\omega_{3}}\) |
2 & | 0 & | 0\\ |
0 & | 2 & | 0\\ |
0 & | 0 & | 2\\ |